Device Context

How to use this guide 3
Who this guide is for 3
Introducing Device Context 3
 Device Context Benefits 4
Strategic considerations when deploying Device Context 4
Prerequisites 5
 Okta Devices 5
 Device Trust 5
Use Cases 6
 Device Registration (Okta Devices) 6
 Deploying Device Trust on Desktop devices 9
 Providing your own Certificate Authority for Device Context 9
 Configure the SCEP Payload 10
 In Okta, configure management attestation and upload your certificate 10
 Using Okta as a CA 11
 macOS using Jamf Pro - static SCEP challenge 11
 Configure management attestation and generate a SCEP URL and Secret Key 11
 Create a static SCEP profile 11
 macOS using Jamf Pro - dynamic SCEP challenge 12
 Configure management attestation and generate a SCEP URL 12
 Create a dynamic SCEP profile in Jamf Pro 13
Verify that the Okta CA was installed on your devices

Windows using Workspace ONE

In Okta, download the x509 certificate

In Okta, configure management attestation, generate a SCEP URL and a Secret Key

In Workspace ONE, create a static SCEP profile

In Workspace ONE, Add/Edit a Certificate Template

In Workspace ONE, define a device profile to deploy the Okta Intermediate CA to the Intermediate Store on devices

In Workspace ONE, define a user profile to deploy the Okta CA-issued client certificate to the Personal Store on devices for management attestation

On a Windows computer, verify the certificate installation

Windows using Microsoft Intune

Download the x509 certificate from Okta

Create a Trusted Certificate profile in MECM

Register the AAD app credentials for Okta in Microsoft Azure

Configure management attestation and generate a SCEP URL in Okta

Create a SCEP profile in MECM

Verify the certificate installation on a Windows computer

Deploying Device Trust on Mobile devices

Configure Okta Endpoint Management for mobile devices

Integrate Okta with your third-party EMM provider

- Workspace ONE for Android
- Workspace ONE for iOS
- Microsoft Intune for Android

Using Device Context in app-level policies

Device state and device management

Endpoint Protection and Response (EDR) Signals
How to use this guide

This guide details the various steps and prerequisites required to configure Device Trust across a variety of platforms and third-party Enterprise Mobility Management (EMM) solutions. These steps are detailed in two separate desktop and mobile device sections.

This guide also discusses a few popular use cases enabled by Device Context, such as how to leverage it when configuring app-level policies. Note that passwordless authentication (FastPass) is discussed in detail in the separate Deploying passwordless authentication guide.

Who this guide is for

This guide is written for technical implementers who design, test, and deploy Okta.

Introducing Device Context

Modern digital businesses face an increasing number of challenges. As enterprises are witnessing an influx of new devices and device types chosen by their end-users, they are required to make access decisions based not only on user risk but also device risk (as well as network risk). Furthermore, administrators seek visibility and easy management of device state, ownership as well as user-to-device binding across most common platforms (macOS, iOS/iPad OS, Windows, and Android).

When users authenticate using a device it presents a context — the device type, its state (managed or registered), and additional data such as the presence of a firewall or an active antivirus solution. This context is critical when determining what type of authentication methods are required in order to satisfy the appropriate level of authentication assurance that meets a specific app security requirement.

In OIE “Device Context” encompasses Okta Devices and Device Trust. Okta Devices is a set of services and capabilities that embeds Okta on every device to give organizations visibility into devices accessing Okta. Device Trust builds upon Okta Devices with the ability to integrate with Enterprise Mobility Management (EMM) solutions and provide context for enterprise-managed devices. Both Device Trust and Okta Devices enable contextual access decisions.

Device Context is a cornerstone of Okta Identity Engine (OIE) and is an enabler for App-level Policies and Passwordless experiences. It is advisable to consult the App-Level Policies Deployment Guide as well as the Passwordless Authentication Deployment Guide.
Device Context Benefits

Device Context provides maximum visibility on the information and state that the device presents in order to assess the authentication methods that are required to grant access to Okta-managed Apps. Combined with App-level Policies (powered by authentication assurance levels), Device Context is an enabler of passwordless experiences.

Key benefits are:

- Better visibility: device & user binding in Okta Universal Directory
- Better access control: suspend or deactivate devices and sessions
- Better device analysis which strengthens app-level policies, based upon:
 - Registration with Okta (using Okta Verify)
 - EMM status (managed vs unmanaged)
 - Endpoint Detection and Response (EDR) Signals

Strategic considerations when deploying Device Context

In order to create the best and most secure access policies for your apps, consider the following:

- Okta Devices registers users’ devices in the Okta Universal Directory once enrolled in Okta Verify, creating a strong binding between users and their devices. This allows some basic device administration functionality, such as the ability to suspend/deactivate a user's registered device to prevent it from accessing protected applications. However, Okta Devices is NOT an alternative to an EMM or EDR solution. For the highest assurance and security requirements, consider adopting such solutions.
- Okta Device Trust supports the most common platforms: iOS/iPad OS, macOS, Windows, and Android. For the most consistent experience, consider limiting your supported platforms to these platforms.
- Device Trust supports the following:
 - EMM solutions: Workspace ONE, Jamf, Microsoft Intune
 - EDR solutions: Crowdstrike and Microsoft Windows Security Center
- EMM tools will inform the policy if the device is managed or unmanaged. Consider this when crafting your policies.
- EDR tools capture additional information (such as the presence of a firewall or antivirus application on a PC) that can be very useful to determine assurance level. Consult the OIE documentation to learn the signals that are available and include
these in your strategy when crafting IAM policies

Prerequisites

Okta Devices

Okta Devices requires that Okta Verify has been added as an authenticator, and that an enrollment policy has been created that prompts users to enroll a device into Okta Verify.

To add Okta Verify as an authenticator:

1. In the Admin Console, navigate to Security > Authenticators.
3. Click Add on the Okta Verify tile.
4. Configure the Okta Verify options appropriately (see Configure Okta Verify Options for details) and click Add.

To create an enrollment policy:

1. In the Admin Console, navigate to Security > Authenticators.
2. Under Enrollment, add a new or edit an existing multifactor policy.
 - If adding a policy: Click Add Multifactor Policy.
 - If editing a policy: Select the policy you want to edit, and then click Edit.
 Note: the users whose devices you wish to register into Okta Devices must be a member of a group that the Multifactor Policy is assigned to. These groups will be listed in the policy’s Assigned to groups field.
3. In the Eligible Authenticators section, select one of the following from the Okta Verify drop down box:
 - Optional: allows new and existing users to choose to enroll Okta Verify as an authenticator, but does not require them to
 - Required: new and existing users must complete enrolling a device into Okta Verify in order to access Okta

Device Trust

The following requirements must be met in order for devices to be considered “managed” by Okta policies and rules:

- Devices must have Okta Verify installed
- Mobile device management requires integration with a third-party Enterprise Mobile Management (EMM) solution such as Microsoft Intune or Workspace ONE
● Desktop device management requires a Certificate Authority (CA) that can issue client certificates to devices intended to be managed. OIE allows you to provide your own certificate authority or use Okta as a CA.
● iOS devices must have iOS 13 or 14 installed
● The following operating systems are supported:
 ○ Android 7.0 or later
 ○ iOS 13, iOS 14
 ○ macOS 10.15.x (Catalina) and 11 (Big Sur)
 ○ Windows 10, 32-bit and 64-bit
● macOS systems must have Apple Extensible SSO configured in your EMM solution if you wish to create policies that provide a password experience (FastPass). Please refer to Configure Extensible SSO for Safari and native apps on managed macOS devices for more details.
● iOS devices must have the Credential SSO Extension configured in your EMM solution if you wish to create policies that provide a password experience (FastPass). Please refer to Configure Credential SSO Extension for managed iOS devices for more details.

Use Cases

Device Registration (Okta Devices)

When a user installs Okta Verify on a device and enrolls it as an authenticator, the device becomes registered as a unique object in the Okta Universal Directory. This registration binds the user to the Okta Verify app instance on the device, allowing admins to see a list of enrolled devices and change their lifecycle state in the Okta Admin Console.

All registered devices will be in one of three lifecycle states, as detailed below:

| Active | • All Okta Verify factors associated with the device are supported.
 | • Users can access protected resources from the device, if permitted by the app sign-on policies applied to the resources. |
Suspended

This is intended to be a temporary state. It is useful if you need to pause (and later resume) device access for users such as contractors or employees who take a leave of absence. Suspended devices can be unsuspended from the **Devices** page in the Okta Admin Console.

When a device is suspended:
- All active sessions that were established on that device using Okta Verify are terminated.
- Active sessions established without Okta Verify are unaffected until the session ends.
- New sessions using Okta Verify can’t be established.
- Okta Verify authentication factors can’t be used from the device, but users can continue to use password, email, or WebAuthN authentication factors from the device.
- Users can’t add or remove accounts from Okta Verify on the device.
- Device certificates are unaffected (applies to desktop devices).
- The device can’t be unsuspended by the user trying to enroll in Okta Verify from the device.

Deactivated

This is intended to be used if a device is reported as lost or compromised. A device that is deactivated can be reactivated from the **Devices** page in the Okta Admin Console. However, reactivated devices must re-enroll in Okta Verify.

- All active sessions that were established on that device using Okta Verify are terminated.
- Active sessions established without Okta Verify are unaffected until the session ends.
- New sessions using Okta Verify can’t be established.
- Okta Verify authentication factors (for example, signed nonce authentication, signed nonce with User Verification, temporary one-time password, and Push) can’t be used from the device, but users can continue to use password, email, or WebAuthN authentication factors from the device.
- Users can’t add or remove accounts from Okta Verify on the device.
- Enrolled factors on the device are deactivated and users must re-enroll them when the device is activated.
- Device certificates are revoked (applies to desktop devices).
- If all rules in the app sign-on policy protecting a resource require devices to be registered, a user on a Deactivated device is denied access to that resource. If the policy includes rules which allow access from unregistered devices, an end user on a Deactivated device might be able to access the resource but not by using Okta Verify.

To see all enrolled devices and manage their lifecycle state, launch the Okta Admin Console and navigate to **Directory > Devices**.
The left pane of the Devices page allows the admin to filter the device list based upon the following criteria:

- **Platform**: the device’s operating system (e.g. Android, Windows)
- **Access Status**: Any, Created, Active, Suspended, Deactivated
- **Device Management**: Any, Managed, Not managed

The **Device info** column displays:

- The device’s name. This can be clicked to present device details such as the model, OS Version, and enrollment date
- The device owner’s full name (as entered in their Okta user profile).
- The device owner’s Okta username

The **Platform** column displays the device’s OS.

The **Status** column displays whether the device is currently active, suspended, or deactivated, as well as whether it is managed or not managed by an EMM.

- To **suspend** a device, click the ✋ icon in the status column. When a device is suspended, this icon is replaced by the ✔️ icon, which can be clicked to Unsuspend the device.
- To **deactivate** a device, click the ✗ icon in the status column. A deactivated device can be reactivated by clicking the ✔️ icon, OR permanently removed from the devices list by clicking the 🔴 icon.

In addition to the company-wide list of devices shown above, it is also possible to navigate directly to a particular user’s list of registered devices. To do so:
1. In the Okta Admin console, navigate to **Directory > People**
2. Search for or click on the name of the user whose devices you wish to see
3. In the user’s profile, click **Devices**
4. Clicking a device will display further details and will allow you to suspend/deactivate it

Deploying Device Trust on Desktop devices

Okta and your EMM solution must be configured prior to creating App-level Policies that leverage Device Trust. This guide will refer to computers running Windows or macOS as “desktop devices,” and mobile devices running Android or iOS as “mobile devices.” Each device type requires a separate configuration process to be performed.

Note: If you wish to use Device Trust to enable a password experience (FastPass) for macOS users, Apple Extensible SSO must be configured in your EMM solution. Please refer to [Configure Extensible SSO for Safari and native apps on managed macOS devices](#) for more details.

Choosing a Certificate Authority

Windows and macOS device management requires a **Certificate Authority (CA)** that can issue client certificates to targeted devices. Device Trust uses these client certificates to determine whether devices are managed or not. This allows application sign-on policies to grant or deny access to an application and/or prompt for more authentication factors, based on the device’s managed status.

OIE allows you to use Okta as a CA, or you can use your own existing CA if you already have one in place that you’d prefer to use.

Providing your own Certificate Authority for Device Context

To provide your own Certificate Authority (CA), your environment requires a PKI infrastructure that is integrated with your EMM solution to distribute Okta-provided client certificates to targeted devices. In addition to distributing certificates, your EMM takes care of renewing certificates before they expire and revoking certificates from your EMM server and managed devices when devices are no longer managed.

In addition to devices managed by your existing EMM solution, Okta can manage devices that have a certificate deployed by an existing Active Directory Certificate Services (ADCS) infrastructure. To do so, the device must have a certificate deployed from the same CA that is set up in Okta.

To use your own CA, perform the following steps:
Configure the SCEP Payload

Make sure SCEP profiles are targeted at the **USER** level, not the **DEVICE** level. This ensures that the certificate is deployed to the login keychain and accessible to Okta Verify. Your SCEP policy requires a user context. Multiple users using the same device is supported but only if each user is from a separate org. The enrolled user must be managed by your EMM and possess a certificate.

Configure the SCEP payload using the following settings:

<table>
<thead>
<tr>
<th>Key</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyUsage</td>
<td>Integer</td>
<td>Set to signing so Okta Verify can sign the nonce sent from the Okta server.</td>
</tr>
<tr>
<td>AllowAllAppAccess</td>
<td>Boolean</td>
<td>Set to true so Okta Verify can sign requests without prompting users to sign in. Otherwise users are prompted to allow Okta Verify to access the key.</td>
</tr>
<tr>
<td>KeysExtractable</td>
<td>Boolean</td>
<td>Set to false so that it cannot be copied to another device easily.</td>
</tr>
</tbody>
</table>

In Okta, configure management attestation and upload your certificate

1. In the Okta Admin Console, go to **Security > Device Integrations**.
2. Click the **Endpoint Management** tab.
3. Click **Add Platform**.
4. Select **Desktop (Windows and macOS only)**.
5. Click Next.
6. Select **Use my own certificate authority** for the Certificate authority.
7. Click **Save**.
8. Click the **Certificate Authority** tab.
9. Click **Add Certificate Authority**.
10. In the **Add Certificate Authority** dialog box, browse to the Intermediate CA that will be used to issue the Client Certificate. If you have multiple such issuers, upload all of them one at a time.
 - **Note**: Okta doesn’t support PKCS#7, PKCS#12, or PFX certificate formats.
 - Certificates are uploaded automatically. A message appears if uploads are successful. To view details, click **View root certificate chain details**.
11. Click **Close**.
Using Okta as a CA

EMMs use the Simple Certificate Enrollment Protocol (SCEP) to issue certificates to managed devices. When configuring Okta as a CA, the SCEP “challenge type” can be set to Static, Dynamic, or Delegated. Some EMMs (such as Jamf Pro) support multiple challenge types while others support only one. Before configuring Okta as a CA, determine what challenge type your EMM supports or recommends.

macOS using Jamf Pro - static SCEP challenge

Configure management attestation and generate a SCEP URL and Secret Key

Note: This procedure applies to any EMM solution that supports pushing the Apple SCEP EMM payload.

1. In the Okta Admin Console, navigate to Security > Device Integrations.
2. Click the Endpoint Management tab.
3. Click Add Platform.
 Note: If you add more than one configuration for the same type of platform, see this Known Issue.
4. Select Desktop (Windows and macOS only).
5. Click Next.
6. On the Add Device Management Platform page, enter the following:
 a. Certificate authority: Select Use Okta as certificate authority.
 b. SCEP URL challenge type: Select Static SCEP URL.
 c. Click Generate.
 d. SCEP URL: Copy and save the value. You will need this value later.
 e. Secret Key: Copy and save the value. You will need this value later
 Note: Save the SCEP URL and Secret Key in a safe place. This is the only time they will appear in the Okta Admin Console.
7. Click Save.

Create a static SCEP profile

1. In Jamf Pro, go to Computers > Configuration Profiles.
2. Click + New.
3. Navigate to Options > General.
4. On the General profile page, enter the following:
 a. Name: Enter a name for the profile.
 b. Description: Optional. Enter a description of the profile.
 c. Level: Select User Level.
5. Navigate to Options > SCEP.
6. Click Configure.
7. On the SCEP profile page, enter the following:
 a. **URL**: Enter the **SCEP URL** you saved in step 6b above.
 b. **Name**: Enter a name for the SCEP profile.
 c. **Subject**: Enter a subject.
 Choose a name that indicates that the certificate is used as the device management signal to Okta. As a best practice, you can also include profile variables provided by Jamf Pro to include the device ID (UDID). For a list of supported variables, see Jamf Pro document *Payload Variables for Computer Configuration Profiles*.
 d. **Challenge type**: Static.
 e. **Challenge**: Copy and paste the Secret key you generated in step 6e above.
 f. **Verify Challenge**: Copy and paste the Secret key again.
 g. **Key Size**: select 2048.
 h. **Use as digital signature**: Check this option.
 i. **Allow export from keychain**: Uncheck this option.
 j. **Allow all apps access**: Check this option
 k. Click Save.

macOS using Jamf Pro - dynamic SCEP challenge

Configure management attestation and generate a SCEP URL

Note: This procedure applies to any EMM solution that supports pushing the Apple SCEP EMM payload.

1. In the Okta Admin Console, go to **Security > Device Integrations**.
2. Click the **Endpoint Management** tab.
3. Click **Add Platform**.
 - **Note**: If you add more than one configuration for the same type of platform, see this **Known Issue**.
4. Select **Desktop (Windows and macOS only)**.
5. Click **Next**.
6. On the Add Device Management Platform page, enter the following:
 a. **Certificate authority**: Select **Use Okta as certificate authority**.
 b. **SCEP URL challenge type**: Select **Static SCEP URL**, and then click **Generic**.
 c. Click **Generate**.
 d. **SCEP URL**: Copy and save the value. You will need this value later.
 e. **Username**: Copy and save the value. You will need this value later.
Create a dynamic SCEP profile in Jamf Pro

1. In Jamf Pro, go to Computers > Configuration Profiles.
2. Click + New.
3. Navigate to Options > General.
4. On the General profile page, enter the following:
 a. Name: Enter a name for the profile.
 b. Description: Optional. Enter a description of the profile.
 c. Level: Select User Level.
5. Navigate to Options > SCEP.
6. Click Configure.
7. On the SCEP profile page, enter the following:
 a. URL: Enter the SCEP URL you saved in step 6b above.
 b. Name: Enter a name for the SCEP profile.
 c. Subject: Enter a subject.
 Okta recommends choosing a name that indicates that the certificate is used as the device management signal to Okta. As a best practice, you can also include profile variables provided by Jamf Pro to include the device ID (UDID). For a list of supported variables, see Jamf Pro document Payload Variables for Computer Configuration Profiles.
 d. Challenge type: Select Dynamic-Microsoft CA.
 ■ URL To SCEP Admin: Enter the Challenge URL you saved in step 6b above.
 ■ Username: Enter the UserName you saved in step 6f above.
 ■ Password: Enter the Password you saved in Step 6g above.
 ■ Verify Password: Re-enter the Password you saved
 e. Key Size: Select 2048, and then select Use as digital signature.
 f. Allow export from keychain: Leave this unselected. It is good security practice to mark the certificate as non-exportable.
 g. Allow all apps access: Select this option.
8. Click Save.
9. Configure the targets that the profile will be deployed to:
 a. Click Configuration Profiles.
 b. Click the applicable configuration profile name.
 c. Click the Scope tab.
d. Click Edit.
e. Click + Add.
f. Locate the required deployment targets, and then click Add.
10. Click Save.

Verify that the Okta CA was installed on your devices

On a macOS device managed by Jamf Pro, make sure the SCEP profile is installed.

1. Go to System Preference > Profiles.
2. Verify that your dynamic SCEP profile is installed.
3. Open Keychain > Login.
4. Verify that a client certificate and associated private key exists.

Windows using Workspace ONE

In Okta, download the x509 certificate

The x509 certificate you download from Okta is the Organization Intermediate certificate.

1. In the Okta Admin Console, navigate to Security > Device Integrations.
2. Click the Certificate Authority tab.
3. For the Okta CA Certificate Authority, click the Download x509 certificate icon in the Actions column.
 You will upload the certificate to Workspace ONE later.

In Okta, configure management attestation, generate a SCEP URL and a Secret Key

1. In the Okta Admin Console, navigate to Security > Device Integrations.
2. Click the Endpoint Management tab.
3. Click Add Platform.
 Note: If you add more than one configuration for the same type of platform, see this Known Issue.
4. Select Desktop (Windows and macOS only).
5. Click Next.
6. On the Add Device Management Platform page, enter the following:
 a. Select Use Okta as certificate authority as the Certificate authority.
 b. Select Static SCEP URL as the SCEP challenge type.
 c. Click Generate.
 d. Copy and save the Okta SCEP URL and the Secret key. You will paste these in Workspace ONE in the Create a static SCEP profile phase.
Note: Save the SCEP URL and Secret Key in a safe place. This is the only time they will appear in the Okta Admin Console.

7. Click **Save**.

In Workspace ONE, create a static SCEP profile

1. If not already, log in to Workspace ONE as an administrator.
2. In Workspace ONE, click **DEVICES** (left ribbon bar).
3. Click **Certificates > Certificate Authorities**.
4. Click **ADD**.
5. On the Certificate Authority - Add/Edit page, enter the following:
 a. **Name**: Enter a name for the CA.
 b. **Description**: Optional. Enter a description for the CA.
 c. **Authority type**: Select **Generic SCEP**.
 d. **SCEP Provider**: Basic is entered automatically and can't be changed.
 e. **SCEP URL**: Copy and paste the SCEP URL you generated in step 6b above.
 f. **Challenge Type**: Click **STATIC**.
 g. **Static Challenge**: Copy and paste the Secret Key you generated in step 6d above.
 h. **Confirm Challenge Phrase**: Copy and paste the Secret Key you generated in step 6d above.
 i. **Retry Timeout**: Accept the default value of 30.
 j. **Max Retries When Pending**: Accept the default value of 5, or specify a different number of retries the system allows while the authority is pending.
 k. **Enable Proxy**: Accept the default value of **DISABLED** or select **ENABLED** if appropriate for your environment. If you select Enabled, Workspace ONE UEM acts as a proxy between the device and the SCEP endpoint defined in the CA configuration.
6. Click **TEST CONNECTION**. If you select **SAVE** before **TEST CONNECTION**, the error **Test is unsuccessful** appears.
7. After the **Test is successful** message appears, click **SAVE AND ADD TEMPLATE**. If the test doesn't succeed, make sure that you can access the Okta SCEP URL generated in step 6b above from Workspace ONE UEM.

In Workspace ONE, Add/Edit a Certificate Template

1. In Workspace ONE, click the **Request Templates** tab.
2. Click **ADD**.
3. On the Certificate Template - Add/Edit page, enter the following:
 a. **Name**: Enter a name for the template.
 b. **Description**: Optional. Enter a description for the template.
 c. **Certificate Authority**: Select the CA you created in Step 3.
d. **Issuing Template**: Leave blank or configure as appropriate for your implementation.

e. **Subject Name**: Enter `CN = {EmailUserName} managementAttestation {DeviceUid}`.

f. **Private Key Length**: Select 2048.

g. **Private Key Type**: Select **Signing**.

h. **SAN Type**: N/A.

i. **Automatic Certificate Renewal**: Click **DISABLED**.

j. **Publish Private Key**: Click **DISABLED**.

4. Click **SAVE**.

In Workspace ONE, define a device profile to deploy the Okta Intermediate CA to the Intermediate Store on devices

1. In Workspace ONE, click **RESOURCES** (left ribbon bar).
2. Click **Profiles & Baselines > Profiles**.
3. Click **ADD**, and then select **Add Profile**.
4. Select **Windows > Windows Desktop > Device Profile**.
5. On the General page, enter the following:
 a. **Name**: Enter a name for the device profile.
 b. **Description**: Optional. Enter a description for the device profile.
 c. **Deployment**: Select **Managed**.
 d. **Assignment Type**: Accept the default or configure as appropriate for your implementation.
 e. **Allow Removal**: Accept the default or configure as appropriate for your implementation.
 f. **Managed By**: Enter the person or group with administrative access to the profile.
 g. **Smart Groups**: Begin typing the name of the group and then select it from the list.
 h. **Exclusions**: Allows you to exclude groups from the profile. Accept the default or configure as appropriate for your implementation.
 i. **Additional Assignment Criteria**: Allows you to schedule a deployment schedule.
 j. **Removal Date**: Allows you to specify a date when the profile is removed from the device.

6. Click **Credentials** in the left pane.
7. Click **CONFIGURE**.
8. In the Credentials page, enter the following:
 a. **Credential Source**: Select **Upload**.
 b. **Certificate**: Click **Upload** and browse to the certificate you downloaded in Step 1.
c. **Key Location**: Accept the default or configure as appropriate for your implementation.

d. **Certificate Store**: Select **Intermediate**.

9. Click **SAVE AND PUBLISH**.

In Workspace ONE, define a user profile to deploy the Okta CA-issued client certificate to the Personal Store on devices for management attestation

This step creates the management payload that pushes the client certificate information and credential to the client, allowing the client to connect to Okta and request a new client certificate. The client certificate is used for management attestation as part of Okta Verify-enabled flows.

1. In Workspace ONE, click **RESOURCES** (left ribbon bar).
2. Click **Profiles & Baselines > Profiles**.
3. Click **ADD**, and then select **Add Profile**.
4. Select **Windows > Windows Desktop > User Profile**.
5. In the General page, enter the following:
 a. **Name**: Enter a name for the user profile.
 b. **Description**: Optional. Enter a description for the user profile.
 c. **Deployment**: Select **Managed**.
 d. **Assignment Type**: Select **Auto**.
 e. **Allow Removal**: Select **Always**.
 f. **Managed By**: Optional. Enter additional admin names.
 g. **Smart Groups**: Enter the same group(s) that you specified in step 5g above.
 h. **Exclusions**: Allows you to exclude groups from the profile. Accept the default or configure as appropriate for your implementation.
 i. **Additional Assignment Criteria**: Allows you to schedule a deployment schedule.
 j. **Removal Date**: Allows you to specify a date when the profile is removed from the device.

6. Click **Credentials** in the left pane.
7. Click **CONFIGURE**.
8. In the Credentials page, enter the following:
 a. **Credential Source**: Select **Defined Certificate Authority**.
 b. **Certificate Authority**: Select the same Certificate Authority that you configured previously.
 c. **Key Location**: Select **TPM If Present** to support devices with or without TPM.
 d. **Certificate Store**: Select **Personal**.

9. Click **SAVE AND PUBLISH**.
On a Windows computer, verify the certificate installation

1. Verify that the client certificate was installed:
 a. On the Windows computer, click **Start**, and then type **cert**.
 b. Click **Manage user certificates**.
 c. In **Certificates - Current User**, click **Personal > Certificates**.
 d. Make sure the client certificate exists.
2. Verify the certificate authority (CA):
 a. In **Certificates - Local Computer**, click **Intermediate Certificate Authority > Certificates**.
 b. In the **Issued To** column, find **Organization Intermediate Authority**.
 c. Make sure the **Issued By** column specifies **Organization Root Authority** for **Organization Intermediate Authority**.

Windows using Microsoft Intune

Download the x509 certificate from Okta

1. In the Okta Admin Console, go to **Security > Device Integrations**.
2. Click the **Certificate Authority** tab.
3. In the **Actions** column, click the **Download x509 certificate** icon.
 You will upload the certificate to Microsoft Endpoint Configuration Manager (MECM) later.

Create a Trusted Certificate profile in MECM

1. In Microsoft Endpoint Configuration Manager (MECM), go to **Devices**.
2. Click **Configuration profiles**.
3. Click **+ Create profile**.
4. In Create a profile, do the following:
 a. **Platform**: Select **Windows 10 and later**.
 b. **Profile**: Select **Trusted certificate**.
 c. Click **Create**.
5. In the Trusted Certificate Wizard, do the following:
 a. Enter a name and (optionally) a description.
 b. Click **Next**.
 c. Select the x509 certificate that you downloaded from Okta in step 3 above.
 d. In **Destination store**, select **Computer certificate store - Intermediate**.
 e. Click **Next**.
f. Assign the trusted certificate profile to one or more user groups. **Note**: the user group(s) must be the same as the group(s) you will assign the SCEP profile to in Create a SCEP profile in MECM.

g. Click Next.

h. Set Applicability Rules.

i. Click Next.

j. Review the configuration, and then click Create.

Register the AAD app credentials for Okta in Microsoft Azure

1. In Microsoft Azure, click **App registrations**.

2. Click + New registration.

3. On the **Register an application** page, enter the following:
 a. **Name**: Enter a meaningful name for the application. Make note of this for later use.
 b. **Supported account types**: Select the appropriate supported account type. Okta tested with **Accounts in this organizational directory only ([Your_Tenant_Name] only - Single tenant)** selected.
 c. **Redirect URI (optional)**: Leave blank, or select Web, and then enter a redirect URI.

4. Click **Register**.

5. On the app page under **Essentials**, copy and make a note of the **Application (client) ID**.
 You will paste this value in the Okta Admin Console later.

6. Add a client secret:
 a. In the left pane, click **Certificates & secrets**.
 b. Under **Client secrets**, click + New client secret.
 c. In the **Add a client secret** section, enter the following:
 ■ **Description**: Optional. Enter a description of the client secret.
 ■ **Expires**: Select an expiration time period.
 d. Click **Add**.
 The secret appears under **Client secrets**.
 e. In the **Client secrets** section, copy and make a note of the **Value**.

7. Set Intune scep_challenge_provider permissions:
 a. In the left pane, click **API permissions**.
 b. Click + Add a permission.
 c. In the **Request API permissions** section, scroll down, and then click Intune.
 d. Under **What type of permissions does your application require?** click Application permissions.
 e. In the **Select permissions** search field, enter scep, and then select the **scep_challenge_provider** checkbox.
 f. Click **Add permissions**.
In the Configured permissions section, click Grant admin consent for [Your_Tenant_Name].

Click Yes in the message that appears.

8. Set Microsoft Graph Application.Read.All permissions:
 a. Click + Add a permission.
 b. In the Request API permissions section, click Microsoft Graph.
 c. Under What type of permissions does your application require? click Application permissions.
 d. In the Select permissions search field, enter application, expand Application, and then select the Application.Read.All checkbox.
 e. Click Add permissions.
 f. In the Configured permissions section, click Grant admin consent for [Your_Tenant_Name].
 g. Click Yes in the message that appears.

9. Set Azure Active Directory Graph Application.Read.All permissions:
 Note: Microsoft Azure portal no longer supports Azure Active Directory Graph. As a workaround, use a PowerShell script to set the Azure Active Directory Graph Application.Read.All permissions.
 a. Create and run a PowerShell script that sets the Azure Active Directory Graph Application.Read.All permissions.
 See the following PowerShell resources:
 b. Go to the Microsoft Azure portal and verify that the Azure Active Directory Graph Application.Read.All permission is assigned to the application in the API permission blade.

Configure management attestation and generate a SCEP URL in Okta

1. In the Admin Console, go to Security > Device Integrations.
2. Click the Endpoint Management tab.
3. Click Add Platform.
 Note: If you add more than one configuration for the same type of platform, see this Known Issue.
4. Select Desktop (Windows and macOS only).
5. Click Next.
6. Configure the following:
 a. Certificate authority: Select Use Okta as certificate authority.
b. **SCEP URL challenge type**: Select *Delegated SCEP URL (Microsoft Intune only)*.

c. Enter the values that you copied from Microsoft Azure into the following fields:
 - **AAD client ID**: Enter the value you copied from step 5 above.
 - **AAD tenant**: Enter your AAD tenant name followed by .onMicrosoft.com.
 - **AAD secret**: Enter the value you copied from step 6e of above.

Example:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD client ID</td>
<td>bf67ac02-59b1-4cec-b5aa-901f1b52f949</td>
</tr>
<tr>
<td>AAD tenant</td>
<td>myAADDomain.onMicrosoft.com</td>
</tr>
<tr>
<td>AAD secret</td>
<td>0A-r30_jJz-..4C0A1MLZSz2Qf6OGq6C8</td>
</tr>
<tr>
<td>SCEP URL</td>
<td>![Generate button]</td>
</tr>
</tbody>
</table>

7. Click **Generate**.
8. Copy and save the Okta SCEP URL. You will paste the URL in Microsoft Endpoint Configuration Manager later

Create a SCEP profile in MECM

1. In Microsoft Endpoint Configuration Manager (MECM), go to **Devices**.
2. Click **Configuration profiles**.
3. Click + **Create profile**.
4. In Create a profile, enter the following:
 a. **Platform**: Windows 10 or later
 b. **Profile**: SCEP certificate
 c. Click **Create**.
5. In the SCEP Certificate Wizard enter a name and (optionally) a description.
6. Click **Next**.
7. Enter the following:
 a. **Certificate type**: User
 b. **Subject name format** *(recommended; other formats will also work): CN=\{UserPrincipalName\} ManagementAttestation {{AAD_Device_ID}}*
c. **Key storage provider**: Enroll to Trusted Platform Module (TPM) KSP if present, otherwise Software KSP.

d. **Key usage**: Digital signature.

e. **Key length**: 2048.

f. **Hash algorithm**: Select SHA-2.

8. Click + **Root Certificate**.

9. In the **Root Certificate** pane, select the trusted certificate that you created earlier in Step 2, and then click OK.

10. Under **Extended key usage**, set **Predefined values** to **Client Authentication**.

11. Copy the SCEP URL you generated in Step 8 above and paste it into the SCEP Server URLs field.

12. Click **Next**.

13. Assign the SCEP certificate to the same user group(s) to which you assigned the **Trusted certificate profile** in step 5f above.

14. Click **Next**.

15. Set Applicability Rules.

16. Click **Next**.

17. Review the configuration, and then click **Create**.

Verify the certificate installation on a Windows computer

1. Verify the client certificate installation:
 a. On the Windows computer, click **Start** and type `cert` and then click **Manage user certificates**.
 b. Look in **Personal > Certificates**.

2. Verify the Certificate Authority:
 a. On the Windows computer, click **Start** and type `cert` and then click **Manage user certificates**.
 b. Look in Intermediate **Certificate Authority > Certificates**.
 c. In **Issued To**, find and double-click **Organization Intermediate Authority**.
 d. See Issuer: Organization Root Authority.

3. Verify successful SCEP certificate installation and flow:
 a. On the Windows computer, click **Start**, type **Event**, and then click **Event Viewer**.
 b. Look in **Applications and Service Logs > Microsoft > Windows > DeviceManagement-Enterprise > Admin**.
 c. In the **General** tab, find:
 - SCEP: Certificate installed successfully.
 - SCEP: Certificate request generated successfully

Deploying Device Trust on Mobile devices
In addition to being enrolled in your EMM, the device must also have Okta Verify installed. For best results, integrate with an EMM solution that can silently install Okta Verify to all EMM-enrolled devices.

Okta has tested the following EMM solutions:

- Android: VMware Workspace ONE Unified Endpoint Management, Microsoft Intune
- iOS: VMware Workspace ONE Unified Endpoint Management

Note: To provide a password experience (FastPass) to iOS users, the Credential SSO Extension must be configured in your EMM solution. Please refer to Configure Credential SSO Extension for managed iOS devices for more details.

Configure Okta Endpoint Management for mobile devices

When evaluating an app sign-on policy that requires devices to be managed, Okta determines the management status of your targeted Android and iOS devices by verifying whether there's a key installed on the device which matches a key generated through the Okta Admin Console and entered in your EMM provider's managed app configuration.

To generate this key:

1. In the Admin Console, go to Security > Device Integrations.
2. Click the Endpoint management tab.
3. Click Add Platform.

 Note: If you add more than one configuration for the same type of platform, see Device Trust on Identity Engine known issues.
4. Select Android or iOS as applicable and click Next.
5. In **Configure management attestation**:
 a. Copy the provided Secret key to your clipboard by clicking the copy icon adjacent to the field. You'll enter the Secret key later in your EMM provider's app configuration.
 ■ Make a note of the provided Secret key value as this is the only time it will appear in Okta. If you generate a new Secret key by clicking Reset secret key, make sure to also update your EMM configuration with the new key.
 ■ The Device management provider field is pre-populated with the name of your EMM but you can change it. The contents of this field will be displayed to end users when they enroll their device.
 b. In the Enrollment link field, enter a web address for redirecting end users with unenrolled devices. For example, you may want to redirect these users to a page with enrollment instructions or the enrollment page of your selected EMM (assuming the EMM provider supports web-based enrollment).
Integrate Okta with your third-party EMM provider

Regardless of which EMM provider you choose to integrate with Okta, the following two steps must be completed:

1. Configure your EMM provider to manage Okta Verify and to install Okta Verify on end user devices that do not have it installed.
 Note: If you are configuring your EMM to deploy Okta Verify to Android devices, make sure that Okta Verify is installed in the *work profile* of the device.
2. Configure the key-value pair by using your EMM provider's managed app configuration as described in their documentation:
 a. **Domain**: Enter the URL of your Okta org
 b. **Key**: enter `managementHint`
 c. **Value**: Enter the Secret Key value that you saved during the Configure Device Management for mobile devices procedure.
 Note: The key-value pair is case-sensitive.

We suggest using the settings and steps detailed below if you are using Workspace ONE or Microsoft Intune. EMM configurations can change without notice, so Okta recommends that you always consult your EMM’s documentation for the most up-to-date information.

Workspace ONE for Android

To add, assign, and manage Okta Verify with Workspace ONE UEM, perform the procedures as described in the following Workspace ONE's [Add Assignments and Exclusions to your Android Applications](#).

Configure the following settings:

- **App Delivery Method**: Automatic
- **Managed Access**: Enable

Workspace ONE for iOS

- **In Add Application**:
 o **Platform**: Apple iOS
 o **Source**: Search App Store
 o **Name**: Enter the name of the app. A search finds the app after you click Next.
 o **Details**: Keep the defaults, and then click *Save & Assign*

- **In Assignment**:
Distribution:
- **Name**: Enter a name.
- **Assignment Groups**: Specify a group(s).
- **App Delivery Method**: Auto

Restrictions:
- **Make App EMM Managed if User Installed**: Enable

Application Configuration:
- **Managed Access**: Enable
- **Send Configuration**: Enable
- Click +Add and configure settings:
 - **Configuration Key**: managementHint
 - **Value Type**: String
 - **Configuration Value**: Enter the Secret Key that you generated in step 5a above

Microsoft Intune for Android

To manage Okta Verify with Microsoft Intune for Android devices, perform the procedures as described in the Microsoft Intune document [Add app configuration policies for managed Android Enterprise devices](#).

- **Device enrollment type**: Managed devices
- **Associated App**: Okta Verify
- **Configuration settings format**: Use configuration designer
- **Username (string)**: Enter your username for your Okta org

Using Device Context in app-level policies

Device state and device management

In OIE, application [sign-on policies and rules](#) can be configured to apply to devices based on the following device state and device management selections:

- **Any**: the rule will be applied to all devices
- **Registered/Not managed**: the rule will only be applied to devices that are enrolled in Okta Verify, but EMM management is not required.
- **Registered/Managed**: the rule will only be applied to devices that are enrolled in Okta Verify AND managed by a third-party EMM solution
When the conditions selected above are met or not met, the rule can be configured to deny/allow access and/or prompt for additional authentication accordingly. For example:

- Low sensitivity applications might consist of only one rule that allows access from all devices regardless of registrations and management.
- Medium sensitivity applications might consist of:
 - A rule that requires unregistered devices to use 2 factors to authenticate.
 - A rule that allows registered and managed devices to authenticate without a password.
- High sensitivity applications can be configured to:
 - Require that iOS and Android devices are managed by third party EMM solutions.
 - Require biometric authentication every time the application is launched, regardless of the device state.

To see a detailed list of the available sign-on policy IF/THEN conditions and how they behave, please consult [Add an app sign-on policy rule](#).

Endpoint Protection and Response (EDR) Signals

In addition to evaluating the device's state and management, sign on policies can be configured to evaluate signals from a third party EDR solution such as Crowdstrike or Windows Security Center. These signals can then be used by the policy to determine an access or authentication decision when a user tries to access a protected resource.

For example, a policy can be created that only allows access to a sensitive application from Windows devices that report they have active firewall and endpoint protection software, as shown below:
To learn more about leveraging an EDR integration in your app sign-on policies, please consult our EDR Integrations documentation.